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We study the effects of spin-flip scatterings on the time-dependent transport properties through a magnetic
quantum dot attached to normal and ferromagnetic leads. The transient spin dynamics as well as the steady-
state tunneling magnetoresistance �TMR� of the system are investigated. The absence of a definite spin-
quantization axis requires the time propagation of two-component spinors. We present numerical results in
which the electrodes are treated both as one-dimensional tight-binding wires and in the wide-band limit
approximation. In the latter case we derive a transparent analytic formula for the spin-resolved current, and
transient oscillations damped over different time scales are identified. We also show that in the presence of
spin-flip scatterings the TMR can be inverted even for symmetrically coupled leads. For any given strength of
the spin-flip coupling the TMR becomes negative provided the ferromagnetic polarization is larger than some
critical value. Finally we show how the full knowledge of the transient response allows for enhancing the spin
current by properly tuning the period of a pulsed bias.
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I. INTRODUCTION

Single-electron spin in nanoscale systems is a promising
building block for both processors and memory storage de-
vices in future spin-logic applications.1 In particular great
attention has been given to quantum dots �QDs�, which are
among the best candidates to implement quantum bit gates
for quantum computation.2 In these systems the spin-
coherence time can be orders of magnitude longer than the
charge coherence times,3–6 a feature which allows one to
perform a large number of operations before the spin coher-
ence is lost. Another advantage of using QDs is the possibil-
ity of manipulating their electronic spectrum with, e.g., ex-
ternal magnetic fields, gate voltages and fine tuning the
characteristic time scales of the system.

For practical applications, it is important to achieve full
control of the ultrafast dynamics of QD systems after the
sudden switch on of an external perturbation. To this end the
study of the time evolution of spin-polarized currents and the
characterization of the spin-decoherence time is crucial. The
theoretical study of the transient regime is also relevant in
the light of recent progresses in the time resolution of dy-
namical responses at the nanoscale. Techniques such as tran-
sient current spectroscopy7 and time-resolved Faraday
rotation8,9 allow us to follow the microscopic dynamics at
the subpicosecond time scale. These advances may open
completely different scenarios with respect to those at the
steady state. For instance, transient coherent quantum beats
of the spin dynamics in semiconductor QDs have been ob-
served after a circularly polarized optical excitation,8,9 and
theoretically addressed by Souza.10 We also mention a recent
experiment on split-gate quantum point contacts in which the
measured quantum capacitance in the transient regime was
six orders of magnitude larger than in the steady state.11

Another attractive feature of magnetic QDs is their use as
spin devices in magnetic tunnel junctions �MTJs�. Different

orientations of the polarization of ferromagnetic leads results
in spin-dependent tunneling rates and hence in a nonvanish-
ing tunneling magnetoresistance �TMR�. In recent
experiments12–14 the inverse TMR effect �TMR�0� has been
observed and various models have been proposed to address
such a phenomenon.15–17

In this paper we study the time-dependent transport
through a single-level quantum dot connected to normal and
ferromagnetic leads. In order to get a sensible transient re-
gime, we adopt the so-called partition-free approach, in
which the electrode-QD-electrode system is assumed to be in
equilibrium before the external bias is switched on.18,19 Spin-
symmetry-breaking terms �such as spin-flip scatterings and
spin-dependent dot-lead hoppings� are included,20 and this
requires the time propagation of a genuine two-component
spinor.

Explicit calculations are performed both in the case of
noninteracting one-dimensional �1D� leads of finite length
and in the wide-band limit approximation �WBLA�. In the
WBLA we derive a closed analytic formula for the exact
spin-resolved time-dependent current, which can be ex-
pressed as the sum of a steady state and a transient contribu-
tion. The latter consists of a term that only contains transi-
tions between the QD levels and the electrochemical
potentials �resonant-continuum� and a term that only con-
tains intradot transitions �resonant-resonant�. Remarkably
these two terms are damped over two different time scales,
with the resonant-continuum transitions longer lived than the
resonant-resonant transitions. We further show that going be-
yond the WBLA extra transitions occur. These involve the
top/bottom of the 1D electrode bands and might be relevant
for narrow-band electrodes.

For QDs connected to normal leads we study the quantum
beat phenomenon in the presence of intradot spin-flip cou-
pling of strength Vsf. We show that the amplitude of the beats
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is suppressed independently of the structure of the leads
�WBLA and 1D leads�. In addition we show how to engineer
the spin polarization of the total current by exploiting the full
knowledge of the time-dependent response of the system. By
applying a periodic pulse of proper period, we provide nu-
merical evidence of oscillating spin polarizations with ampli-
tude two orders of magnitude larger than in the dc case.

Finally, in the case of ferromagnetic electrodes we study
the steady-state TMR and the conditions for its inversion.
Treating the leads in the WBLA we derive a simple formula
for the TMR in linear response. Noticeably, in the presence
of spin-flip interactions there is a critical value of the polar-
ization of the ferromagnetic leads, above which the TMR is
negative even for symmetric contacts to the left/right leads.
This provides an alternative mechanism for the TMR inver-
sion. The above scenario is qualitatively different with 1D
leads, e.g., the TMR can be negative already for Vsf=0.

The paper is organized as follows: In Sec. II we introduce
the lead-QD-lead model. In Sec. III we employ the WBLA
and derive an exact formula for the time-dependent current
in the presence of spin-symmetry-breaking terms. We present
explicit results both for normal and ferromagnetic leads, fo-
cusing on transient quantum beats �normal� and the TMR
�ferromagnetic�. In Sec. IV we address the above phenomena
in the case of 1D leads and engineer the dynamical spin
responses. Here we also describe the numerical framework
employed to compute the time-dependent evolution of the
system. The summary and main conclusions are drawn in
Sec. V.

II. MODEL

We consider the system illustrated in Fig. 1, which con-
sists of a single-level QD contacted with 1D left �L� and
right �R� electrodes. The latter are described by the tight-
binding Hamiltonian,

H� = �
�=↑,↓

�
j=1

N

���j�c�j�
† c�j� + V0c�j�

† c�j+1� + V0
�c�j+1�

† c�j�� ,

�1�

where N is the number of sites of lead �=L ,R, V0 is the
nearest-neighbor hopping integral, and c�i�

�†� is the annihila-
tion �creation� operator of an electron on-site i of the lead �

with spin �. In the case of ferromagnetic leads, we distin-
guish between two configurations, one with parallel �P� and
the other with antiparallel �AP� magnetization of the two
leads. In order to model these two different alignments we
use the Stoner prescription according to which the on-site
energies are

P ���j↑ = 0

��j↓ = ��
� ,

AP �
�Lj↑ = 0

�Lj↓ = ��

�Rj↑ = ��

�Rj↓ = 0
� , �2�

where �� is the band spin splitting. In the above model the P
configuration corresponds to a majority-spin electron with
spin ↑ in both leads, while in the AP configuration the
majority-spin electrons have spin ↑ in lead L and spin ↓ in
lead R. The case of normal leads corresponds to ��=0. The
Hamiltonian of the quantum dot reads

HQD = �
�

�d�d�
†d� + Vsfd↑

†d↓ + Vsf
� d↓

†d↑, �3�

where d�
�†� annihilates �creates� an electron on the QD with

spin � and Vsf is responsible for intradot spin-flip scatterings.
The on-site energy �d�=�d+�Ez /2, �= �1, where Ez is an
intradot energy splitting. The quantum dot is connected to
the leads via the tunneling Hamiltonian,

HT = �
�=L,R

�
���

�Vd�,���d�
†c�1�� + Vd�,���

� c�1��
† d�� , �4�

with Vd�,��� as the amplitude for an electron in the QD with
spin � to hop to the first site of lead � with spin ��. Alter-
natively, one can express HT in terms of the one-body eigen-
states of H� labeled by �� ,k ,��,

HT = �
�=L,R

�
k=1

N

�
���

�Vd�,�k��d�
†c�k�� + Vd�,�k��

� c�k��
† d�� ,

�5�

with Vd�,k���=�2 / �N+1�Vd�,��� sin k.
Putting all terms together, the Hamiltonian of the whole

system in equilibrium reads

H0 = HL + HR + HQD + HT. �6�

In the next two sections we study out-of-equilibrium
properties of the system described in Eq. �6� after a sudden
switch on of a bias voltage U��t� in lead �=L ,R. We calcu-
late the time-dependent spin-polarized current I���t� flowing
between the QD and lead �. I���t� is defined as the variation
of the total number of particles N�� of spin � in lead �,

I���t� 	
d

dt
N�� = 2R�

k,��

V�k�,d��Gd��,�k�
� �t,t� , �7�

where Gd��,�k�
� is the dot-lead lesser Green’s function of the

contacted nonequilibrium system and R stands for the real

lead L lead RQD

V V
1 2 33 2 1

Vsf
( )
)(

P (AP)

∆ε

FIG. 1. �Color online� Schematic illustration of the model
Hamiltonian. The lead L with majority-spin ↑ electrons and the lead
R with majority-spin ↑ �↓� electrons in the P �AP� configurations are
separated from the QD by tunnel barriers, which are accounted for
with a renormalized hopping V. The energy spin splitting is �� in
the leads and 2Ez in the QD. Spin-flip scatterings of strength Vsf

occur in the QD.
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part. Unless otherwise stated, the current is computed at the
L interface and the short-hand notation I�= IL� is used for the
spin-polarized current, while Itot= I↑+ I↓ and Ispin= I↑− I↓ de-
note the total current and spin current, respectively. We fur-
ther specialize to constant biases U��t�=U� except in Sec.
IV B where the bias is a periodic pulse. Therefore we define
U	UL, while the value of UR is either zero or −U. The
numerical simulations have been performed using dot-lead
hoppings independent of � �symmetric contacts�. We show
that despite the symmetry between L and R leads the sign of
the steady-state TMR can be inverted, a property which has
been so far ascribed to strongly asymmetric tunneling
barriers.15,17 Moreover we specialize Eq. �4� to the case
Vd↑,�↑=Vd↓,�↓	V and Vd↑,�↓=Vd↓,�↑=0. However, we note
that spin-flip scatterings are accounted for by considering a
finite intradot Vsf, which is taken to be real in this work. If
not otherwise specified, the initial Fermi energy EF of both
leads is set to zero �half-filled electrodes�.

III. RESULTS IN THE WIDE-BAND LIMIT
APPROXIMATION

Here we study the model introduced in Sec. II within the
WBLA. This approximation has been mostly used to study
spinless electrons and a closed formula for the exact time-
dependent current has been derived.19,21 Below we general-
ize these results to systems where the spin symmetry is bro-
ken. The retarded Green’s function projected onto the QD
can be expressed in terms of the embedding self-energy,


��	����� = �

=↑,↓

�
�=L,R


��
�	����� �8�

which is a 2�2 matrix in spin space. In Eq. �8� ���
����
accounts for virtual processes where an electron on the QD
hops to lead � by changing its spin from � to 
 and hops
back to the QD with final spin ��. Exploiting the Dyson
equation the expression of ���
���� is


��
�	����� = �
k

Vd�,�k
g�k
�	�V�k
,d��, �9�

where g�k
= �	−��k
−U�+ i��−1 is the retarded Green’s
function of the uncontacted � lead expressed in terms of the
one-particle eigenenergies ��k
. In the WBLA Eq. �9� be-
comes


��
�	����� � −
i

2
��
����, �10�

i.e., the self-energy is independent of frequency. The 2�2
matrices ’s have the physical meaning of spin-dependent
tunneling rates and account for spin-flip processes between
the leads and the QD. We wish to point out that each 
matrix must be positive semidefinite for a proper modeling
of the WBLA. Indeed, given an arbitrary two-dimensional
vector �v↑ ,v↓� one finds

�
�,��

v�
���
����v�� = 2��

k

��	 − ��k
 − U���
�

Vd�,�k
v�2
.

�11�

The above condition ensures the damping of all transient
effects in the calculation of local physical observables.

Proceeding along similar lines as in Ref. 19 one can de-
rive an explicit expression for spin-polarized current I���t�
defined in Eq. �7�,

I���t� = I��
s +� d	

2�
f�	�Tr
T��	,t���� , �12�

f�	� being the Fermi distribution function. In the above
equation I��

s is the steady-state polarized current, which for
�=L reads

IL�
s =� d	

2�

f�	 − UL� − f�	 − UR��

� Tr� 1

	 − HQD + i
2

R
1

	 − HQD − i
2

L�� , �13�

with �=���� and =���. The steady current at the right
interface IR�

s is obtained by exchanging L↔R in the right-
hand side of Eq. �13�. We observe that IR�

s �−IL�
s since the

spin current is not conserved in the presence of spin-flip
interactions. The second term on the right-hand side of Eq.
�12� describes the transient behavior and is expressed in
terms of the quantity

T��	,t� = �
�

U�

ei�	+U�−HQD+ i
2

�t

�	 − HQD + i
2��	 + U� − HQD + i

2�

��i��,� − �

1

	 + U� − HQD + i
2
� + H.c. − �

�

U�
2

�
e−i�HQD− i

2
�t

�	 − HQD + i
2��	 + U� − HQD + i

2�

��

ei�HQD+ i
2

�t

�	 − HQD − i
2��	 + U� − HQD − i

2� . �14�

Few remarks about Eq. �14� are in order. In linear-response
theory only the contribution of the first line remains. Such
contribution is responsible for transient oscillations, which
are exponentially damped over a time scale �� j� and have
frequencies 	�j ��EF+U�−hj�, where hj + i� j

−1 and j=1,2
are the two eigenvalues of HQD+ i /2. These oscillations
originate from virtual transitions between the resonant levels
of the QD and the Fermi level of the biased continua
�resonant-continuum�. No information about the intradot
transitions �resonant-resonant� is here contained. Resonant-
resonant transitions are instead described by the contribution
of the second line of Eq. �14�, which yields oscillations of
frequency 	1,2= �h1−h2� damped as exp�−t /�1,2�, with �1,2

−1

= ��1�−1+ ��2�−1. Finally, it is straightforward to verify that for
� and HQD both diagonal in spin space, Eq. �12� decouples
into two identical formulas �but with different parameters�,
which exactly reproduce the well-known spinless result.19,21
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Below we consider diagonal matrices �
, in agreement
with the discussion at the end of Sec. II. Thus, all spin-flip
scatterings occur in the quantum dot. The ferromagnetic na-
ture of the leads is accounted for by modeling the  matrices
as22

P ���↑�↑↑ = 0��1 + p� � = L,R

��↓�↓↓ = 0��1 − p� � = L,R
� ,

AP �
�L↑�↑↑ = 0L�1 + p�
�L↓�↓↓ = 0L�1 − p�
�R↑�↑↑ = 0R�1 − p�
�R↓�↓↓ = 0R�1 + p�

� , �15�

where all the remaining matrix elements are vanishing and
0� p�1 is proportional to the polarization of the leads.
Moreover we assume that 0�	0 does not depend on �,
yielding a left/right symmetry in absence of ferromagnetism.

In the numerical calculations shown in this section all
energies are measured in units of 0, times are measured in
units of � /0, and currents are measured in units of e0 /�,
with e as the electron charge.

A. Normal case: Quantum beats

In this section we consider a quantum dot with an intradot
energy splitting Ez between the ↑ and ↓ levels and an intradot
spin-flip energy Vsf. The QD is coupled to L and R normal
electrodes, p=0. The spin splitting Ez leads to two different
transient frequencies and produces coherent quantum beats
in both the total and spin currents.10 The effect of spin-flip
scatterings on the coherent oscillations is studied.

To make contact with Ref. 10, we consider the same pa-
rameters, i.e., UL=0, UR=200, �d�=��t�UR /2+�Ez /2, with
Ez=10, and inverse temperature �=100. However, the intra-
dot spin-flip coupling Vsf is, in our case, nonzero. In Fig. 2

we show the time-dependent current Itot�t� and the discrete
Fourier transform,23 Itot�	�, of Itot�t�− Itot��� for different val-
ues of Vsf=0 ,10,20. The spin current Ispin�t� is displayed in
Fig. 3. The small tunneling rate  leads to a very long tran-
sient regime, a property which allows us to observe well-
defined structures in the Fourier spectrum of the current. At
Vsf=0 the frequencies of both I↑�t� and I↓�t� are 	�1=	�2
= �UR /2�Ez /2�=95,105, in agreement with the results in
Ref. 10. This is confirmed by the Fourier analysis of Itot,
which is displayed in panel �b� of Fig. 2. As Vsf is increased
the frequencies of the transient oscillations change according
to �UR /2��Ez

2 /4+Vsf
2 �, see panels �d� and �f� of Fig. 2, and

the amplitude of the quantum beats in Itot and Ispin is sup-
pressed. Such suppression is due to the fact that the Hamil-
tonian of the whole system is spin diagonal if we choose the
quantization axis along

�̂ = ẑ cos � + x̂ sin � , �16�

with cos �=Ez /�Ez
2+4Vsf

2 . This follows from the invariance
of the normal electrode Hamiltonians �p=0� and of the tun-
neling Hamiltonian ���=012�2� under rotations in spin
space. Therefore, the time-dependent spin current measured
along ẑ is smaller the larger Vsf is. Of course the spin current

measured along the quantization axis �̂ is not suppressed by
changing Vsf.

Despite the quantum beats phenomenon and its suppres-
sion with increasing Vsf are well captured within the WBLA,
only a subset of transient frequencies can be predicted in this
approximation. To describe transitions between the top/
bottom of the electrode bands and the resonant levels re-
quires a more realistic treatment of the lead Hamiltonian �see
Sec. IV�.

B. Ferromagnetic case: TMR

The finite spin polarization p of the electrodes breaks the
invariance of HL and HR under rotations in spin space. Thus
the one-particle states become true spinors for nonvanishing
Vsf. Using Eq. �13� we calculate the steady-state total cur-
rents both in the P and AP configurations, which we denote
as IP and IAP, and study the TMR,
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FIG. 2. Itot�t� and Itot�	� for Vsf=0 
panels �a�-�b��, Vsf=10 
pan-
els �c�-�d��, Vsf=20 
panels �e�-�f��. The discrete Fourier transform
is calculated using 50 equidistant points of Itot�t�− Itot��� with t in
the range �0.5–1�. The rest of the parameters are UL=0, UR=200,
�d�=��t�UR /2+�Ez /2 �with Ez=10�, and inverse temperature �
=100.
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FIG. 3. �Color online� Ispin�t� for Vsf=0 ,10,20 and the same
parameters as in Fig. 2.
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TMR =
IP − IAP

IAP
. �17�

For Vsf=0 the TMR is always positive and its sign can be
inverted only during the transient regime at sufficiently low
temperatures.10 The positiveness of the steady-state TMR is
due to the fact that 0L=0R. It is possible to show that for
0L�0R �or 0L�0R� and �d�=0, the TMR�−p2 in
linear-response theory, yielding the so-called resonant inver-
sion of the TMR.15

In Fig. 4 we display the contour plot of the TMR in the
parameter space spanned by the bias voltage U=UL=−UR
and the polarization p for different values of the spin-flip
energy Vsf and for Ez=0, 0=0.5, and �=100. We observe
that by increasing Vsf, a region of negative TMR appears and
becomes wider the larger Vsf is. The region in which the
TMR is appreciably different from zero ��TMR��0.05� is
confined to the high magnetization regime, i.e., p�0.4. The
minimum of the TMR is reached for the largest value of Vsf
at small U and large p, see panel �d� of Fig. 4. For small
biases the sign inversion of the TMR can be understood by

calculating the currents IP and IAP in linear response. By
expanding Eq. �13� to first order in U and using the  ma-
trices of Eq. �15�, one can show that to leading order in the
bias

TMR = p2 �1 − p2�0
4 − �1 − p2�0

2Vsf
2 − 2Vsf

4


Vsf
2 + �1 − p2�0

2�
�1 + p2�Vsf
2 + �1 − p2�0

2�
.

�18�

For any given Vsf and 0 the denominator in the above ex-
pression is positive, while the numerator can change sign.
The regions of positive/negative TMR are displayed in the
left side of Fig. 5. For 0

2�2Vsf
2 the TMR is negative inde-

pendently of the polarization p. This follows from the fact
that the tunneling time is larger than the time for an electron
to flip its spin, thus favoring the AP alignment. Along the
boundary 0

2=2Vsf
2 the TMR is zero only for p=0 and nega-

tive otherwise. In the region 0
2�2Vsf

2 there exists a critical
value of the polarization,
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FIG. 4. �Color online� Contour plot of the TMR at the steady state in units of 10−2 as a function of U and p for different values of Vsf=0.3
�top left�, 0.33 �top right�, 0.4 �bottom left�, and 0.47 �bottom right�. The boundary TMR=0 is displayed with a black line. The remaining
parameters are 0=0.5, �d�=0, and �=100.
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pc =�1 −
2Vsf

4

0
4 − 0

2Vsf
2 , �19�

such that the TMR is positive for p� pc and negative for
p� pc. It is worth to emphasize that at the boundary Vsf=0
the TMR is positive for any finite value of p and zero for
p=0. This analysis clearly shows that the sign of the TMR
can be reversed without resorting to asymmetric couplings
L�R provided spin-flip processes are included. The right
side of Fig. 5 displays the TMR as a function of the polar-
ization for different values of the ratio Vsf

2 /0
2�1 /2 �region

of TMR inversion�.
We also have investigated the temperature dependence of

the TMR. This is relevant in the light of practical applica-
tions where a large TMR is desirable at room temperature.
The increase in temperature tends to suppress the negative
values of the TMR, while the positive values remain almost
unaffected. When ��1 the region of the TMR inversion
disappears. The positiveness of the TMR at high tempera-
tures has been already observed in Ref. 22.

In Sec. IV we provide an exact treatment of the 1D leads
and illustrate differences and similarities with the results ob-
tained so far.

IV. RESULTS FOR ONE-DIMENSIONAL LEADS

The numerical results contained in this section are ob-
tained by computing the exact time evolution of the system

in Eq. �6� with a finite number N of sites in both L and R
leads.24–26 Let us define the biased Hamiltonian at positive
times as

Hbias�t� = H0 + H�t� , �20�

with

H�t� = ��t� �
�=↑,↓

�
j=1

N

U��t�c�j�
† c�j�. �21�

Both H0 and Hbias have dimension 2�2N+1�, where the fac-
tor of two accounts for the spin.

We use the partition-free approach18 and specialize to a
sudden switching of a constant bias. Accordingly, we first
calculate the equilibrium configuration by numerically di-
agonalizing H0 and then we evolve the lesser Green’s func-
tion as

G��t,t�� = ie−iHbiast f�H0�eiHbiast�, �22�

with f the Fermi distribution function. The spin-polarized
current flowing across bond m-n is then calculated from

Im,n,��t� = 2�
��


H0�m�;n��I�− i
G��t,t��n��;m�� , �23�

where 
. . .�m�;n�� denotes the matrix element associated to
site m with spin � and site n with spin ��, while I stands for
the imaginary part. The above approach allows us to repro-
duce the time evolution of the infinite-lead system provided
one evolves up to a time Tmax�2N /v, where v is the maxi-
mum velocity for an electron with energy within the bias
window. Indeed for t�Tmax high-velocity electrons have
time to propagate until the far boundary of the leads and
back yielding undesired finite-size effects in the calculated
current �see Fig. 6�. For this reason we set N much larger
than the time at which the steady state �or stationary oscilla-
tory state in the case of ac bias� is reached. We tested this
method by comparing our numerical results against the ones
obtained in Refs. 23 and 27 where the leads are virtually
infinite, and an excellent agreement was found for t�Tmax.
Moreover, the value of the current at the steady state agrees
with the Landauer formula with high numerical accuracy.
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Below we study the spin-polarized current at the left in-
terface I�= I1L,d,� flowing between the first site of lead L
�m=1L� and the QD �n=d� with spin �. We stress that our
approach is not limited to the calculation of the current
through a specific bond, as we have access to the full lesser
Green’s function. Sensible electron densities and currents in
the vicinity of the QD can be extracted and their calculation
requires the same computational effort.

In the numerical calculations shown in this section all
energies are measured in units of V0 �4V0 is the bandwidth of
the leads�, times are measured in units of � /V0, and currents
are measured in units of eV0 /�.

A. Normal case: Quantum beats

We study the quantum beats phenomenon for normal 1D
leads ���=0� and intradot spin splitting Ez for different val-
ues of the spin-relaxation energy Vsf. The comparison be-
tween the results obtained within the WBLA and with 1D
tight-binding leads will turn out to be very useful to elucidate
advantages and limitations of the former approach.

In Fig. 7 we show the time-dependent currents Itot�t� and
its discrete Fourier transform Itot�	� at zero temperature us-
ing the parameters UL=0.7, UR=0, V=0.03, and �d�

=��t�UL /2+�Ez /2, with Ez=0.04, for different values of
Vsf=0 ,0.05,0.1. The spin current for the same parameters is
displayed in Fig. 8. The value of the dot-lead hopping V
corresponds to an effective �energy dependent� tunneling rate
 of the order of 10−3. Thus both the bias and the energy spin
splitting are of the same order of magnitude as the ones used
in Sec. IV if measured in units of . As expected the current
reaches a steady state in the long-time limit since the bias is
constant and Hbias does not have bound states.25,28 However,
the weak links between the QD and the leads allows us to
study a pseudostationary regime in which the current dis-
plays well-defined quantum beats.

At Vsf=0, the dominant frequency of the spin-polarized
current I↑ is 	↑

0= �UL /2+Ez /2��0.37, while I↓ oscillates with
a dominant frequency 	↓

0= �UL /2−Ez /2��0.33 
see panel �b�
of Fig. 7�. As in the WBLA, the difference between 	↑ and
	↓ leads to quantum beats in both Itot and Ispin 
see panel �a�
of Figs. 7 and 8�. For nonvanishing Vsf the two fundamental
frequencies 	�

0 renormalize as 	�
0 →	�= �UL /2

+��Ez
2 /4+Vsf

2 �. The system Hamiltonian is no longer diago-
nal along the quantization axis ẑ and I� acquires the second
frequency 	−� besides the original �but renormalized� one
	�. We also observe that as Vsf increases, the amplitude of
the quantum beats in Itot and Ispin is suppressed, similar to
what happens by treating the leads in the WBLA.

We would like to end this section by pointing out that for
leads with a finite bandwidth the current might display extra
oscillation frequencies corresponding to transitions either
from or to the top/bottom of the bands, an effect which can-
not be captured within the WBLA. We have investigated this
scenario by changing the input parameters in such a way that
the transitions from the resonant level of the QD to the bot-
tom of the band are energetically favored. We set UR=0.4,
UL=0, Ez=0, EF=−1.8, �d=−0.5, V=0.02, and Vsf=0. The
corresponding �spin-independent� current and its Fourier
spectrum are shown in Fig. 9. One can clearly see two well-
defined peaks at energies 	1�1.3 and 	2�1.5. As expected,
one of these frequencies corresponds to a transition from the
resonant level to the Fermi energy of the L lead, i.e., �EF
−�d�=1.3. Transitions between the resonant level and the
Fermi energy of the R lead, i.e., �EF+UR−�d�=0.9, are
strongly suppressed since the current is measured at the L
interface. Thus the second peak has to be ascribed to a tran-
sition that involves the bottom of the band EB=−2, specifi-
cally the transition of energy �EB−�d�=1.5. This kind of fea-
tures in the Fourier spectra of the transients points out the
limitations of the WBLA and might be experimentally ob-
served in QDs connected to narrow-band electrodes.

B. Normal case: Engineering the spin polarization

In this section we exploit the full knowledge of the time-
dependent response of the system in order to engineer the
spin-polarization of the total current. In particular we are
interested in maintaining the polarization ratio,
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r�t� = 2
Itot�t�Ispin�t�

Itot
2 �t� + Ispin

2 �t�
, �24�

above some given value in a sequence of time windows of
desired duration. The quantity r is �1 for fully polarized
currents and zero for pure charge or spin currents.

In Fig. 10 we show the time-dependent currents I↑�t� and
I↓�t� as well as Itot�t� and Ispin�t� at zero temperature for dif-
ferent values of Ez=0.1,0.6,2, UL=−UR=1, V=0.2, and
Vsf=0. In the long-time limit the value of r increases steadily
as Ez is increased, and remains below 10−1 for Ez�2. The
polarization ratio can, however, be much larger in the tran-
sient regime and its maximum has a nontrivial dependence
on Ez. At finite values of Ez there is an initial unbalance of
the spin-up and spin-down densities. This implies that for
small times I↓ is suppressed and delayed with respect to I↑
since spin ↑ electrons can freely flow, while there cannot be

any spin ↓ flow before the initial spin ↓ electrons have left
the QD.10 This is the so-called Pauli blockade phenomenon
and is responsible for a recoil of I↓ during the rise of I↑. In
panels �a�–�b� of Fig. 10 we consider the case Ez=0.1. Both
I↑ and I↓ overshoot their steady-state value and oscillate with
rather sharp maxima and minima during the initial transient

see panel �a� of Fig. 10�. However, the oscillation frequen-
cies are very similar �small Ez� and the time at which I↑ has
a maximum in correspondence to a minimum of I↓ occurs
when the amplitude of their oscillations is already consider-
ably damped. On the other hand, for Ez=0.6, see panels �c�–
�d� of Fig. 10, there is a synergy between the Pauli blockade
phenomenon and the frequency mismatch. At small t such
synergy generates large values of the ratio r�1 despite the
fact that r�t→�� is vanishingly small. By increasing further
the value of Ez we observe a long overshoot of I↑ while I↓
oscillates with high frequency; see panels �e�–�f� of Fig. 10
where Ez=2. The ratio r�t� is a smooth decreasing function
of time for t�3 and approaches the value of about 10−2 for
t→�. This behavior differs substantially from the one ob-
tained for Ez=0.6 where r�t� has a sharp peak for 0� t�3
and is very small otherwise. Below we show how one can
exploit this kind of transient regimes to maintain persistently
a large value of r.

We consider the optimal case Ez=0.6 and apply a pulsed
bias29 with period T and amplitude UL=−UR=1 in lead L and
R, respectively. Period T of Hbias is tailored to maintain the
polarization ratio r�t� above �0.5 in a finite range of the
period. For time-dependent biases Eq. �22� has to be gener-
alized as the evolution operator is no longer the exponential
of a matrix. We discretize the time and calculate the lesser
Green’s function according to

G��tn,tn� � e−iHbias�tn��tG��tn−1,tn−1�eiHbias�tn��t, �25�

where tn=n�t, �t is the time step, n is a positive integer, and
G��0,0�= if�H0�.

In Fig. 11 we plot two time-dependent responses for
T=6 and 8. The pulsed bias produces an alternate Itot and
Ispin whose amplitude depends on T. We note that the ampli-
tude of Itot is of the same order of magnitude of the steady-
state value Itot�t→�� attained in Fig. 10�d� for constant bias.
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On the contrary the amplitude of Ispin is two orders of mag-
nitude larger than the corresponding steady-state value. The
polarization r cannot be maintained as large as r�1 �maxi-
mum value of r during the transient� due to an unavoidable
damping. However, the value of r is above 0.5 in a time
window of 1.4 for T=6 �with a maximum value r�0.75� and
2.6 for T=8 �with a maximum value r�0.9� in each period
�see Fig. 11�.

C. Ferromagnetic case: TMR

The spin-dependent band structure of the leads introduces
a new transient oscillation, which originates from intradot
transitions; see discussion below Eq. �14�. Accordingly, we
expect to observe coherent oscillations at frequency 	1,2

= �h1−h2�=2�Ez
2 /4+Vsf

2 , where h1,2 are the eigenvalues of the
isolated QD. These oscillations cannot be observed in the
normal case, as the model is diagonal along the quantization

axis �̂ of Eq. �16� and no transitions between states of oppo-

site polarization along �̂ can occur. In Fig. 12 we display the
spin-up and spin-down time-dependent current 
panel �a��
and density n�=d�

†d� on the QD 
panel �b�� at zero tempera-
ture in the P configuration for ��=1.5, UL=0.1, UR=0, �d�

=��t�UL /2+�Ez /2, Ez=0, V=0.01, and Vsf=0.5. The inset of
panel �a� shows the discrete Fourier transform of Itot�t�. We
note that besides the frequencies 	L1= �EF+UL−h1��0.55
and 	L2= �EF+UL−h2��0.45 already discussed in Sec. III A,
a new frequency 	1,2�1 appears. The peak at 	12 is, how-
ever, much smaller than the resonance-continuum peaks at
	L1,L2. In the light of the WBLA results of Sec. IV we impute
such suppression to three different effects. First, the intradot
oscillation damps faster �about a factor of 2 in the damping

time� than the resonance-continuum oscillations. Second, at
small biases �UL=0.1 in our case�, the amplitude of the tran-
sitions at 	12 is quadratic in the bias while the amplitude of
the transitions at 	L1,L2 
see Eq. �14�� is linear in the bias.
Finally, for weak coupling to the leads �V=0.01 in our case�
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the density oscillation between the two resonant levels is
strongly localized in the QD and weakly propagates in the
leads. To corroborate this picture we plot the discrete Fourier
transform of the total density ntot=n↑+n↓ in the inset of panel
�b�. Contrary to Itot�	�, the density exhibits a dominant peak
at 	12 and a subdominant structure around 	L1,L2�0.5, in
agreement with the discussion above.

Next, we study the steady-state regime in both the P and
AP configurations and calculate the TMR for different values
of the bias voltage U, the band spin splitting ��, and the
spin-flip energy Vsf. Analogies and differences with the case
of wide band leads will be discussed.

In Fig. 13 we display the contour plot of the TMR in the
parameter space spanned by the bias voltage U=UL=−UR
and the band spin splitting �� at inverse temperature �
=100, V=0.25, �d�=0, and for Vsf=0 ,0.1,0.2. In the left
panel we show the TMR for Vsf=0. We can see that despite
that the dot-leads link is symmetric, there is a finite region at
small and intermediate �� in which the TMR�0 although
rather small ��−0.02�. This is a new scenario for the TMR
inversion and stems from the finite bandwidth of the leads
�we recall that TMR�0 for Vsf=0 in the WBLA�. The larg-
est positive value of the TMR �TMR�0.1� occurs for large
magnetization and intermediate bias. This behavior is oppo-
site to the one in the WBLA, where the largest value of the
TMR is obtained at large bias.

As Vsf is increased �central and right panels of Fig. 13� the
region of positive TMR shrinks, in qualitative agreement
with the WBLA. We also note that the largest values of nega-
tive TMR occur at small U and large �� �TMR�−0.15; see
right panel of Fig. 13� and that the TMR approaches zero
abruptly as U is increased, a feature which is in common
with the WBLA. The positive values of the TMR reduce with
respect to the case Vsf=0 and no TMR inversion is observed
at Vsf=0.2. This property is due to the presence of spin-flip
scatterings, which close conducting channels in the P con-
figuration and open new ones in the AP configuration, thus
suppressing the difference IP− IAP.

Finally we have investigated the dependence of the above
scenario on temperature. It is observed that the qualitative
picture described in Fig. 13 survives down to ��10. In-
creasing further the temperature the TMR behaves similarly
to the WBLA.

V. SUMMARY AND CONCLUSIONS

The ultimate goal of future QD-based devices is the pos-
sibility to generate spin-polarized currents, control their spin-
coherence time, and achieve high TMR after the application
of high-frequency signals. This calls for a deep understand-
ing of the time-dependent responses in these systems.

In this paper we have calculated spin-dependent out-of-
equilibrium properties of lead-QD-lead junctions. Realistic
transient responses are obtained within the partition-free ap-

proach. The time-dependent current is calculated for QDs
connected to ferromagnetic leads and in the presence of an
intradot spin-flip interaction. This requires the propagation of
a two-component spinor.

For 1D leads, we evolve exactly a system with a finite
number N of sites in each lead. If N is sufficiently large,
reliable time evolutions are obtained during a time much
larger than all the characteristic time scales of the infinite
system.24–26 By comparing our results against the ones ob-
tained with leads of infinite length,23,27 we have verified that
our method is accurate and robust besides being very easy to
implement.

We have solved analytically the time-dependent problem
in the WBLA and derived a closed formula for the spin-
polarized current. Such a formula generalizes the one ob-
tained in the spin-diagonal case and has a transparent
interpretation.10,30 We stress, however, that within the
WBLA, transitions involving the top or the bottom of the
lead band are not accounted for. The latter may be relevant to
characterize, e.g., the coherent beat oscillations when the de-
vice is attached to narrow-band electrodes.

Furthermore we have shown how to engineer the transient
response of the system to enhance the spin polarization of
the current through the QD. This is achieved by controlling
parameters such as, e.g., the external magnetic field, the
transparency of the contacts, and imposing a pulsed bias of
optimal period. It is shown that by exploiting the synergy
between the Pauli blockade phenomenon and the resonant-
continuum frequency mismatch, one can achieve an ac spin-
polarization two orders of magnitude larger than the dc one.

We also have employed the Stoner model to describe fer-
romagnetic leads and computed the steady-state TMR. We
have found a regime of negative TMR, in which the geom-
etry of the tunnel junction is not required to be asymmetric
and a finite intradot spin-flip interaction turns out to be cru-
cial. For any given Vsf there is a critical value of the ferro-
magnetic polarization above which the TMR is negative. The
magnitude of the TMR is very sensitive to temperature varia-
tions and the TMR inversion phenomenon disappears as �
approaches the damping time of the system.

We would like to stress that our approach is not limited to
1D electrodes and can be readily generalized to investigate
multiterminal devices consisting of several multilevel QDs.
Finally, owing to the fact that the propagation algorithm is
based on a one-particle scheme, it prompts us to include
electron-electron interactions at any mean-field level or
within time-dependent density-functional theory.31
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